
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10875
TITLE: Assessing Survivability Using Software

Fault Injection

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: New Information Processing Techniques for
Military Systems [les Nouvelles techniques de
traitement de l'information pour les systemes
militaires]

To order the complete compilation report, use: ADA391919

The component part is provided here to allow users access to individually authored sections

f proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010865 thru ADP010894

UNCLASSIFIED

...

Click here to view PowerPoint presentation; Press Esc to exit
.. =

11-1

Assessing Survivability Using Software Fault Injection

Jeffrey Voas
Reliable Software Technologies
21351 Ridgetop Circle, #400

Dulles, VA 20166
jmvoas@rstcorp.crom

Abstract approved sources have the endorsement of the
In this paper, we present an approach and exper- US Food and Drug Administration (FDA) which

imental results from using software fault injection to confers important safety information. Computer
assess information survivability. We define informa- system trustworthiness has nothing comparable
tion survivability to mean the ability of an information to the FDA. The problem is both the absence
system to continue to operate in the presence of faults, of standard metrics and a generally accepted or-
anomalous system behavior, or malicious attack. -In ganization that could conduct such assessments.
the past, finding and removing software flaws has tra- There is no Consumer Reports for [software and
ditionally been the realm of software testing. Software information] Trustworthiness."
testing has largely concerned itself with ensuring that
software behaves correctly - an intractable problem These statements highlight two key problems facing
for any non-trivial piece of software. In this paper, software users and consumers alike: (1) a lack of sound

we present "off-nominal" testing techniques, which are metrics for quantifying that information systems are

not concerned with the correctness of the software, but trustworthy, and (2) the absence of an organization

with the survivability of the software in the face of (such as an Underwriter's Laboratory) to apply the

anomalous events and malicious attack. Where soft- metrics in order to assess trustworthiness. In fact,
ware testing is focused on ensuring that the software if these problems were solved, software vendors who
computes the specified function correctly, we are con- sought to provide reliable products would also benefit.

cerned that the software continues to operate in the Note, however, that these two problems are not of

presence of faults, unusual system events or malicious equal size. Problem (1) is the more difficult and prob-

attacks. lem (2) can be achieved more easily, but only after
problem (1) is solved.

1 Introduction The lack of sound, fair, and quantitative metrics

Our motivation for researching advanced software for software safety, reliability, security, and fault-
assessment techniques fits in line with the following tolerance have contributed to the distrust of Cy-
comments made by the committee that wrote the 1998 berspace mentioned in the report. There is a deeper
Trust in Cyberspace report: problem here however, and that is that software qual-

ity is more difficult to assess than it is to achieve. This
1. "The absence of standard metrics and a rec- problem is unique to software; physical systems do not

ognized organization to conduct assessments of experience it. For example, it is far easier to determine
trustworthiness is an important contributing fac- if a ball bearing has been perfectly manufactured via
tor to the problem of imperfect information. In an electron microscope than it is to produce perfect
some industries, such as pharmaceuticals, regu- ball bearings. Such a situation is not true for soft-
latory mandate has resolved this problem by re- ware.
quiring the development and disclosure of infor- Our software research projects over the last 4 years
mation." have focused on creating automated technologies and

metrics to assess software trustworthiness. Our be-
2. "A consumer may not be able to assess accu- lief is that enough emphasis has been applied to pro-

rately whether a particular drug is safe but can cess improvement methods to improve software qual-
be reasonably confident that drugs obtained from ity (even though those processes are often ignored). If

Paper presented at the RTO IST Symposium on "New Information Processing Techniques for Military Systems",
held in Istanbul, Turkey, 9-11 October 2000, and published in RTO MP-049.

11-2

we can better assess the quality of software systems, anomalous system behavior, or malicious attack. In
then hopefully the distrust can be reduced and as a the past, finding and removing software flaws has tra-
side-benefit, we will be able to assess the return-on- ditionally been the realm of software testing. Software
investment from software process improvement, testing has largely concerned itself with ensuring that

We acknowledge, along with the report, that the software behaves correctly - an intractable problem
US Government has not ignored the software assess- for any non-trivial piece of software. In this paper,
ment problem. They have invested heavily in software we present "off-nominal" testing techniques, which are
testing research for the past 20 years. Software test- not concerned with the correctness of the software, but
ing is still the most common approach for determin- with the survivability of the software in the face of
ing whether software will behave as desired. Unfortu- anomalous events and malicious attack. Where soft-
nately, however, the outcome of that research is not ware testing is focused on ensuring that the software
applicable to the large-scale survivability problems en- computes the specified function correctly, we are con-
demic to the Internet. cerned that the software continues to operate in the

As noted in the Trust in Cyberspace report, this re- presence of faults, unusual system events or malicious
search has focused more on testing "in the small" than attacks.
testing "in the large." While this enables better sub- The off-nominal testing approach uses fault injec-
systems, it does not address the interaction problems tion analysis to determine how survivable a program
that weaken survivability: is to unusual events that can occur during field op-

eration. Fault injection is the process of perturbing
"Much of the research in testing has been program behavior by corrupting a program state dur-
directed at dealing with problems of scale. ing program execution. Corrupting program states
The goal has been to maximize the knowl- can affect program control flow as well as corrupt pro-
edge gained about a component or subsys- gram data. We use fault injection analysis to assess
tem while minimizing the number of test information survivability under three different scenar-
cases required. Approaches based oil statis- ios:
tical sampling of the input space have been
shown to be infeasible if the goal is to demon- 0 software flaws in program source code,
strate ultra-high levels of dependability [5],
and approaches based on coverage measures . malicious attacks against programs,
do not provide quantification of useful met-
rics such as mean time to failure. The result
is that, in industry, testing is all too often To assess the survivability of a program, we must
defined to be complete when budget limits know how robust it is under flawed software condi-
are reached, arbitrary milestones are passed, tions. Since most programs today contain on average
or defect detection rates drop below some one defect for every 6000 lines of source code, we know
threshold. There is clearly room for research that today's systems are deployed with a great num-
- especially to deal with the new complica- ber of undiscovered software flaws that may be trig-
tions that MIS brings to the problem: un- gered in the field at anytime [8]. If we knew a priori
controllable and unobservable subsystems." where these flaws exist, we would be able to locate

Therefore research is needed to increase the observ- and fix them. However, since we do not know where
ability of "ilities" such as safety, security, reliability, these flaws are, we simulate their effects by automat-and survivability. In this paper we describe two areas ically corrupting program state at as many program

and urvvablit. Inthi paer e decrie to aeas locations as possible and assessing the effect on sur-
of research that use off-nominal testing for survivabil- vivabiof a pogram sesorruti on aur
ity. vivability of a program state corruption at a particular

location. The effect on security and safety of software

2 Off-Nominal Testing for Survivabil- flaws has been documented in great detail in BugTraq1

ity and in [7].

In this paper, we present an approach anid exper- The technique to simulate software flaws uses pro-

imental results from using software fault injection to gram state corruption. Since, the range of possible

assess information survivability. We define informa- effects on program state is too great to use specific pro-

tion survivability to mean the ability of an information gram corruptions, we use random program corruptions

system to continue to operate in the presence of faults, 1See www.securityfocus.com for BugTraq archives.

11-3

for specific program state types. For instance, we can only manifest when the resulting program state is in-

corrupt program memory by using random number correct (according to some correct specification) based
selection based on the program data type. Program the preceding program state and the current input. In
control flow can be corrupted by corrupting Boolcan other words, if the program state is correct, then the

conditions in control flow constructs. error is not manifest and the fault is inconsequential

In the second scenario, we are interested in as- for the moment. Once the error is manifest, the pro-
sessing the impact of malicious attacks against pro- gram, or more generally, the system may continue to
grams. In this scenario we can use directed fault perform correctly or it may fail. If the system contin-

injection techniques that subject a software program ues to perform correctly (or at least acceptably), then

to the types of well-known attacks it may experience the error is either latent or it has been masked. If the
in the field. The most common attack by far is the system fails due to the error, then the error has been
buffer overrun attack. We have developed specific manifested as a failure.
fault injection functions to test the vulnerability of We use fault injection to manifest errors. Thus,
program buffers to "stack-smashing" buffer overrun we are not introducing true faults in the fault-error-
attacks. On occasion, testing using random program failure model sense; rather, we are injecting errors. A
state corruption to simulate software flaws will some- closer match to fault injection in the sense of the fault-
times result in unveiling a security flaw. Examples error-failure model is mutation testing, where program
of using these techniques against commonly used net- code is selectively "mutated" or altered in order to
work servers are presented later in this paper. determine if test cases can distinguish between good

Finally, we are interested in assessing the impact and flawed code [3]. Since we cannot know a priori
of failing third party software on information surviv- where all program faults are, we manifest program
ability. This topic is important to gauge survivability errors by corrupting program states. If the errors we
of an information system because today's software is introduce during fault injection analysis cause system
almost always built using third party software such as failure, then we have a measure for how survivable the
libraries and commercial off-the-shelf (COTS) com- 3.1 Implementation approaches for fault
ponents. In the preceding two analyses, we use the injection
source code of the program to perform the fault injec-
tion analysis. In assessing the impact of third party The hypothesized errors that software fault injec-

software failures on system survivability, we cannot tion uses are created by either: (1) adding code to

assume access to source code for the third party soft- the code under analysis, (2) changing the code that is

ware (such as proprietary operating system code or there, or (3) deleting code from the code under anal-

COTS software components). As a result, we have ysis. One key requirement from these processes, how-

developed a technique we call Interface Propagation ever, is that the code that is either added, modified,

Analysis (IPA) that gives us the ability to assess the or deleted must change either the software's output or

impact of failing third party software in the system un- an internal program state for at least one software test

der consideration. It is briefly described in Section 4. case. (Different applications of software fault injec-
tion will guide the decisions as to which of these two

3 Source-Code-Based Fault Injection alternatives applies.) Without this requirement, the
Fault injection can be applied to software source hypothesized errors will have had no semantic impact

code by inserting instrumentation "hooks" into the to the original code base and thus were meaningless
original program source. The idea is to be able to (they were not anomalies at all). In mutation testing
observe program state and corrupt either control flow (a type of fault injection that we will discuss later),
or data flow at particular locations within the source this is the dreaded "equivalent mutant" problem. The
code. By corrupting program state, we can assess the difficulty stems from the fact that equivalent mutants
impact on system survivability to inadvertent flaws or are often undetectable, forcing the costs to perform
deliberate attacks against the program. mutation testing to be much greater than they should

In the fault-error-failure model of software, a fault be [9].
is introduced by a programmer, known as a "bug" Figure 1 shows the software fault injection process.
in common parlance. The fault may be an error in Code that is added to the program for the purpose
the design of an algorithm or a simple coding error, of either simulating errors or detecting the effects of
such as an unconstrained buffer array. The fault is those errors is called instrumentation code. To per-
innocuous until it is activated (or triggered) by some form fault injection, some amount of instrumentation
input. At this point, the error is manifest. An error is is always necessary, and althrough this can be added

11-4

manually, it is usually performed by a tool. Instru- event that could possibly affect the software's internal
mentation code can be placed on top of input or out- state.
put interfaces to the software or directly into the logic The function calls we add to overwrite internal pro-
of the software. gram values are termed perturbation functions. Per-

Instrumentation can be added into a variety of code turbation functions are code instrumentation. When
formats: source code, assembly code, binary object perturbation functions are applied to programmer de-
code, etc. In short, any code format that can be corn- fined variables, they typically either: (1) change the
piled, interpreted, or that is ready for execution can value of the variable to a value based on the current
be instrumented. value, or (2) they pick a new value at random (inde-

There are two key approaches for simulating errors: pendent of the original value). Also, they can sim-
(1) directly changing the code that exists (this is re- ply return a constant replacement value if it is sus-
ferred to as code mutation), or (2) modifying the in- pected that any fault placed at that point in the code
ternal state of the program as it executes. We will now would likely result in one particular value regardless
walk through an example of each approach beginning of what the current value was. When non-constant
with code mutation. replacement values are used, the perturbation func-

Suppose a program has the following code state- tion will produce random values based on the current
ment: value and a perturbing distribution. Non-constant per-

turbing distributions include all of the continuous and
a = a + 1; discrete random distributions. The perturbation func-

tion
This statement could be mutated as follows: newvalue (x)= equilikely(
a = a + a + 1; floor(oldvalue(x)*0.6),

floor (oldvalue (x)*1.40)) is an example of a dis-

(provided that a does not have the value of zero). We crete distribution that perturbs a value by substitut-
could also modify the statement to: ing an equilikely random value on the interval of 40%

more and 40% less than the expected value. This
a = a + 10; function however leaves the possibility of returning

newvalue (x) = oldvalue (x). Conditions are placed
And we could delete the statement as well. Note that in the code that executes this function to avoid this.
all of these mutations change the resulting value of a For example, if we wanted to change a's value to
from what it would have had not we not mutated the something close to what it has after this computation,
code (and for every test case that allows this statement
to be executed). a = a + 1;

The concept of forcefully changing the internal we would replace the original statement with the fol-
state of an executing program is a slight variation on lowing code chunk:
the code mutation examples just shown. Clearly, each
of the mutations above will change the state of the pro- a = a + 1;
gram after they are executed. But note that that is not a = newvalue (a).
necessarily true for all mutants. There are code mu- The code for newvalueo would also be added some-
tants that although they are exercised will not modify where into the program and would look like the fol-
the software's internal state. That would be the case lowing pseudo-code:
if the value of a before the mutant a = a + a + 1 was
executed is zero. (This would be an example of a tran- int newvalue (int a)
sient fault using the definitions provided by Carriera {
et al.) counter = 1;

To forcefully modify a program's internal state to oldvalue = a;
a value different than the one it currently has, we will
add a function call to the code that overwrites the cur- do
rent internal value of a portion of the program's state. {
Typically, we overwrite programmer defined variables a = equilikely(floor(oldvalue * 0.6),
or the data that is being passed to or from function floor(oldvalue * 1.4));
calls. By modifying this data, we are simulating the counter++;
internal effects of faulty logic or any other anomalous I

11-5

while ((a == oldvalue) && (counter < 100)); int bitPos = 1;
int i,j,k;

if ((counter == 100) && (a == oldvalue)) int xbit;
{ for (i = 0; i < n; i++)

a = oldvalue - 1; {
} bits 1= bitPos;

bitPos <<= 1;
return (a); }

}i. for (j = 0; j < sizeof(int) * 8; j++)

(Note that 0.6 and 1.4 can be modified to however xbit lrand48)

tight or loose of an interval as is desired. For example, if ((! ! (bits & (1 << xbit))) !=
0.0001 and 10000 could be used to widen the interval (!! (bits & (1 << j))))
of choices.)

Because this function could result in an infinite flipBit(&bits, xbit);
loop while trying to find a different value, a counter is flipBit (&bits, j);
added to ensure that after 100 attempts, the loop ter-
minates and simply decreases the value of a by one.
(We could have just as easily decided to program it for (k = 0; k < sizeof(int) * 8; k++)
to increase the value by one or even flip a coin as to if (bits & (1 < k))
which it does.) flipBit(var, k);

Note that we can also use fault injection to modify
the time at which code is executed by adding func-
tion calls that slow down the software. For exam- 3.2 Fault Injection Security Tool
ple, in Ada, we can add a delay(5) statement to We will now discuss our Fault Injection Security
stop a process from executing for 5 milliseconds. And Tool (FIST). The tool automates the analysis of
we can even simulate events such as the software's security-critical software and requires program inputs,
state, stored in memory, having its bits toggled due fault injection directives (meaning information about
to radiation or other electromagnetic corruption. The how to corrupt program states), and assertions written
flipBit function which will now be described pro- in C and C++ (that define when security of the soft-
vides this capability. ware has been compromised). A schematic diagram of

flipBit FIST is shown in Figure 1.
The perturbation function flipBit toggles specific The fault injection engine provides a developer or

bits. The first argument to flipBit is the original analyst the ability to perturb program states ran-
integer value and the second argument is the bit to domly, append or truncate strings, attempt to over-
be toggled (we assume little-endian notation). The flow a buffer, and perform a number of other numerical
function flipBit is then written in C as follows and fault injection functions. The security policy assertion
linked with the executable. Note that the - represents component provides a developer or analyst the ability
the XOR operation in C and the << operator represents to code the security policy of the program under anal-
a SHIFT-LEFT of y positions. ysis as well as system security constraints.

Using FIST is a four step process: instrument, com-
void flipBit (it *var, int y) pile, execute, and analyze. The source code is instru-

{ =mented with assertions and perturbation functions us-
*var = *var "(1 « y)); ing a source code browser component. The browser

tells the user all the legal points in the source where

flipBit can serve as the underlying engine from instrumentation can be attached. The user places in-

which other perturbation function can be created. For strumentation according to the desired analysis, then

example, to toggle two or more randomly selected bits the instrumented code is compiled. Next, the instru-

in the integer, we can employ f lipNbits: mented program is executed repeatedly, once for each
perturbation function that was encountered during an

void flipNbits(int *var, int n) unperturbed run of the program. In each execution,
{ only one location is perturbed. Any assertions that

int bits = 0; fire during the runs are noted. Relative security met-

11-6

------------------------------ ---------------------------. *..

Adaptive Vulnerability Analysis

Fault Injections SecuriytPolcyte

* buffer overflow
* data corruption
* string manipulation
* fault composition

Program Inputs Security Policy
Assertion . islm1ty K

* strings and other variables
* server commands
* configuration files
* network traffic

Statistical Collection

S... -....................

Relative Security Metrics

Figure 1: Overview of the Fault Injection Security Tool. A program, P, is instrumented with fault injection

functions and assertions about its security policy (based on the vu.. .nerauinay Knowledge of the piu•gisa). 1h.

program is exercised using program inputs. The security policy is dynamically evaluated using program and

system states. If a security policy assertion is violated during the dynamic analysis, the specific input and fault

injection function that triggered the violation is identified. Algorithm 1 is used to collect statistics about the

vulnerability of the program to the perturbed states. One output from the analysis is the relative security metric

)aIPQ.

rics are accumulated for each program location that Fault injection is useful for simulating a variety of

indicate the percentage of runs where a fault injec- anomalous program behavior that would otherwise be

tion function at that location resulted in a security very difficult, if not impossible, to simulate using stan-

violation. The user can browse the result of the ex- dard testing. The main use of fault injection functions

periments using a results browser that links results to for vulnerability analysis is to determine where poten-

the original source code. tial weaknesses exist in a software program that can

be leveraged into security violations. Fault injection
A fault injection engine has been implemented to also reveals the relative importance of variables, state-

support injection of anomalous states as well as spe- ments, or whole functions on the output (and security)

cific exploits to test for vulnerability to known ma- of a program. For example, perturbing the result of

licious threats during the execution of the program. a display function may have little or no effect on the

Fault injection functions are instrumented by default output of a program. On the other hand, perturbing

in every viable program location to permit analy- the result of a function that parses user input, may

sis of software flaws anywhere in the program source well affect the output and perhaps even the security

code. The reasoning is that without prior knowledge of of the application. Finally, fault injection can be used

where actual flaws exist, simulating their effects every- to simulate malicious threats against a software ap-

where during automated analysis can identify which plication such as buffer overrun threats. We describe

locations are most likely to impact security. Recall these uses of fault injection in the Section 3.3.

from the algorithm that program states are perturbed
singly in each test run in order to assess the effect of FIST includes numerous fault injection functions

a single flaw in a given location, for all primitive data types ranging from simple

11-7

Boolean state flips, to string mangling, to "stack problems; however, it is insufficient by itself. Pro-
smashing" buffer overflow functions. These functions grammers often write their own dangerous input func-
include the ability to corrupt Booleans, characters, tions that read in unconstrained input. FIST at-

strings, integers, and doubles. The Boolean pertur- tempts to overflow buffers regardless of whether the

bation function applies a logical negation operation buffer is used in a known dangerous function or is

to an unperturbed value. The character perturba- used in a custom-written input function. Further-
tion function returns a character randomly selected more, FIST can overflow buffers for variables that are
from the ASCII table. String perturbation functions not pushed on the stack. While this type of pertur-
provide the ability to truncate strings, concatenate a bation may not result in the execution of arbitrary

random string, concatenate a fixed string, generate a program code, it may have side effects that compro-
new string of random characters, and replace strings mise program security by corrupting other variables

with a string randomly selected from a file. In addi- used for access/privilege decisions. If the fault injec-

tion to simple fault injection functions, FIST supports tion function results in a security policy breach, the
composition of fault injection functions from a combi- programmer must either ensure that the vulnerable
nation of selected basic fault injection functions. For buffers cannot be overflowed from user input or use
example, a user can append a fixed string with a ran- safe programming practices to ensure that the buffer
dom character fault perturbation, thus building a new overflow cannot occur. Once patched, FIST can be

fault injection function. re-run to determine if the patch is resilient to attack.

The buffer overflow function overwrites the return As an alternative to the source-code-based analy-

address of the stack frame in which the buffer is allo- sis approach, StackGuard, a gcc compiler variant for

cated with the address of the buffer itself. By tracing Linux developed by the Oregon Graduate Institute,
the frame pointer back through the stack, the fault attempts to protect buffers from stack smashing at-

injection function is able to determine where to over- tacks by aborting the program if the return address
write the return address. The opcodes for machine in- pushed on the stack is overwritten [2]. Stack Guard

s+ are written into the buffer being perturbd.A uwill not nrnotct nro•rnams agninst all buffer overflow

Eventually, the activation record containing the mod- attacks, but can prevent stack smashing attacks from
ified return address will be popped off the program running arbitrary code embedded in user input. For

stack and the program will jump to the machine in- example, buffer overflow attacks that overwrite local

structions embedded by the fault injection function. variables that were never intended to be user change-
These instructions will be executed as if they were a able can result in security violations not prevented by

part of the normal operation of the program. Because StackGuard [1].
different platforms implement different forms of pro- The Fuzz tool [4] can be used to overflow buffers,
gram stacks, the buffer overflow fault injection func- too, but with inconclusive results. Because the in-
tions are platform-dependent. Linux x86 and Sparc put is randomly generated, the vulnerability of the
are the two platforms currently supported. program to executing user-defined code cannot be as-

Unsafe languages such as C make buffer overflow at- sessed. FIST implements specific fault injection func-

tacks possible because of input functions such as gets, tions that determine the program's vulnerability to

strcat, and strcpy that do not check the length of specially-craftcd buffer overflow attacks.

the buffer into which input is being copied. If the FIST integrates with the normal build process of
length of the input is greater than the length of the the application under analysis. Any source file that is
buffer into which it is being copied, then a buffer compiled using the FIST pre-processor at build time
overflow can result. Safe programming practices that is instrumented. Libraries can be instrumented us-
read in constrained input can prevent a vast majority ing FIST and then linked to applications, but only if
of buffer overflow attacks. However, many security- the source code for the library is available. Uninstru-
critical programs in the field today do not employ mented libraries can also be linked to instrumented
these safe programming practices. In addition, many applications.
of these programs are still coded in commercial soft- The security-policy-monitoring component of FIST
ware development labs in unsafe languages today. allows users to specify what constitutes a security vio-

FIST detects the potential for buffer overflow at- lation for the software application under analysis. Us-
tacks to be successful regardless of how the input is ing assertions to encode this policy, the policy is mon-
read. Searching for unsafe functions such as strcat itored during the dynamic analysis to determine if it

and strcpy is one technique for detecting potential has been violated. The nature of violations will vary

11-8

from application to application, and the types of vi- server.
olations the user will seek to detect will generally be The programs examined were NCSA httpd version
dependent on both the input to the program and fault 1.5.2.a, the Washington University wu-ftpd version
injection functions. As a result, the analyst must de- 2.4, kfingerd version 0.07, the Samba daemon ver-
termine the security policy for the program being an- sion 1.9.17p3, and pop3d version 1.005h. The source
alyzed. A number of pre-defined assertion functions code for these programs is publicly available on the
have been developed from which a user can specify Internet. Samba, httpd, and wu-ftpd are popular
the security violations for internal program variables, programs and can be found running on many sites on
environment variables, and external system states. the Internet. The analysis of those programs was per-

Perhaps the broadest assertion function FIST pro- formed on a Sparc machine running SunOS 4.1.3-U.
vides allows the user to develop any expression in C The other programs, pop3d and kfingerd, are Linux
to represent a violation assertion. This expression is programs found in public repositories for Linux source
evaluated during execution to determine if a violation code on the Internet. The analysis of those programs
has occurred. If the result of the expression is non- was performed on a Linuy 2.0_0 kernel. The programs
zero, then the violation is assumed to have occurred. were instrumented with both simple fault injection
This function has been developed for a sophisticated functions as well as the buffer overflow functions where
user who does not want to be constrained by the pre- applicable.
packaged functions provided in the tool. Assertion A summary of results from the analysis is shown in
functions are placed at locations in the source code Table 1. The table shows the total number of instru-
during the instrumentation step. FIST also provides mented locations together with the number of simple
a mechanism for external assertion monitoring, perturbations and buffer overflow perturbations that

The external assertion monitor runs in parallel with resulted in security violations. The last column shows
the instrumented program and uses a subset of the the percentage of the functions in the source code that
built-in assertion functions. It is able to monitor files were executed as a result of the test cases employed.
on the system, checking for modifications and/or ac- Higher coverage results may result in more potential
cesses. For the buffer overflow functions, FIST checks security hazards flushed out through the analysis. The
for side effects of the mycmd program. The assertion results should not be interpreted to mean that the lo-
is coded such that a file called touch. out should not cations identified in the analysis are necessarily ex-
be modified during the execution of the instrumented ploitable, only that they require closer examination
program. This assertion will be violated if the buffer from the software's developers to determine if they
overflow succeeds and the mycmd program is executed, can be exploited from input and whether fault-tolerant
which in turn will open touch, out and modify it. So mechanisms should be employed. It is worth mention-
when checking for buffer overflows, the security policy ing, however, that one of the potential buffer overflow
is simple: touch. out should never be modified. vulnerabilities found in wu-ftpd v2.4 and published

in [6] was later reported in CERT Coordination Cen-
wase ster, Pittsburgh, PA, CERT Advisory CA-99-03, "FTP
ware Buffer Overflows" (see www.cert.org).

FIST analysis was performed on five different net-
work services. Network service daemons are interest- 4 Interface Propagation Analysis
ing case studies from a security standpoint because Much of our research during the past 4 years has
they provide services to untrusted users. Most net- been geared toward increasing the observability of
work daemons typically allow connections from any- large-scale information systems. The main "ilities"
where on the Internet, leaving them vulnerable to at- that our work has addressed are security and safety.
tack from malicious users anywhere. Network dae- The premise of our approach is as follows: since it is
mons sometimes run with super-user, or root, priv- rarely possible to guarantee "correct" behavior at the
ilege levels in order to bind to sockets on reserved system or component level, we should instead focus
ports, or to navigate the entire file system with- on guaranteeing levels of "acceptable" behavior. In
out being denied access. Successfully exploiting a essence, we should work to thwart system level failures
weakness in a daemon running with high privileges that are the most undesirable and ignore the rest.
could allow the attacker complete access to the server. Our approach is simple. Start from an assumption
Therefore, it is imperative that network daemons be about the worst behaviors from a component and ob-
free from security-related flaws that could permit un- serve how that will affect the full system. If the effect
trusted users access to high privilege accounts on the is negligible, ignore the component. If the impact is

11-9

Program Instrumented Successful Successful Function
Locations Simple Perturbations Buffer Overflows Coverage

Samba vl.9.17 p3 1264 12 15 45.5%
NCSA httpd vl.5.2a 463 27 3 40.14%
wu-ftpd v2.4 476 11 3 58.62%
pop3d vl.005h 73 2 1 63.64%
kfingerd vO.07 146 12 5 38.1%

Table 1: Results from FIST analysis of network daemons.

large, it is clear that the component is one that needs nent interactions.
scrutiny. The bottom line is that we do not care how
poorly subsystems behave as long as their behaviors 5 Conclusions
do not jeopardize the integrity of the full system. In this paper, we described the use of an off-nominal

Given that resources are always too few, this per- testing approach - fault injection analysis - to test
spective provides an intelligent way to allocate compo- the survivability of an information system to three dif-
nent testing resources, i.e., to components that have ferent types of events:
demonstrated a capacity to cause undesirable, system-
wide problems. w software flaws in program source code,

The approach we have developed is termed In-
terface Propagation Analysis (IPA). IPA is a fault
injection-based technique that simulates component * malicious attacks against programs,
and subsystem failures.

IPA is normally applied once the system is corn- * anomalous behavior from third party software.

pleted. IPA can also be applied before a component
is built, provided there exists a specification for what Source-code-based fault injection analysis can be
the component is expected to do. (Components that applied either to open source software after software
do not yet exist are termed "phantom components"). is released or to software during development by soft-
And finally, IPA can also be used to test the robust- ware vendors. The earlier in the software lifecycle off-
ness of individual components. nominal testing techniques are used, the cheaper the

IPA is made of two software fault injection algo- cost to find and correct bugs. The Fault Injection Se-
rithms: "Propagation From" (PF) and "Propagation curity Tool supports testing of the first two scenarios
Across" (PA). PF corrupts the data exiting a real com- above: simulation of software flaws and malicious at-
ponent (or phantom component) and observes what it tacks against programs. The tool was applied to sev-
does to the remainder of the system (i.e., what type eral commonly deployed open source systems. Even
of system failures ensue, if any). PF can also observe with the low levels of code coverage, several poten-
whether other subsystems fail and how. Thus, PF is tial security-related hazards were demonstrated, one
an advanced testing technique that provides the raw of which was later independently found and reported
information needed to measure the semantic interac- to the CERT CC.
tions between components in order to measure their The third scenario is becoming increasingly impor-
tolerance to one another. tant. Software developed and released today is heavily

PA corrupts the data entering a component. This dependent on third party or COTS software. Anoma-
process simulates the failure of system components lous behavior from third party software can result in
that feed information into the component in order to system-wide failure. Interface Propagation Analysis
see how it reacts. These simulated failures mimic hu- addresses the survivability of a system composed of
man operator errors, failures from hardware devices, custom and third-party components by using fault in-
or failures from other software subsystems. After the jection analysis at component interfaces. The fault
component under analysis is forced to receive corrupt injection analysis can determine the effect of failing
input, PA observes whether the component chokes on or anomalous behavior of third party software on sys-
the bad data and fails. Note that PA is very similar tem survivability. This technology is a key step from
to PF. The only difference is scale: PA is focused on moving from "testing in the small" to "testing in the
standalone components and PF is focused on compo- large".

11-10

5.1 Acknowledgements [9] R. A. DEMILLO, R. J. LIPTON, AND F. G.
Earlier versions of this paper can be found at: SAYWARD. Hints on test data selection: Help

for the practicing programmer. IEEE Computer,
1. A. Ghosh and J. Voas. "Innoculating Software for a pril 1978.

for Survivability," Communications of the A CM,

42(7):38-44, July, 1999.

2. J. Voas and A. Ghosh. "Software Fault Injection
for Survivability", In Proc. of the DARPA Infor-
mation Survivability Conference and Exposition,
January, 2000.

References
[1] S. Bellovin. Re: Stackguard: Automatic

protection from stack-smashing attack. On-
line. Bugtraq archives. See http://www.geek-
girl.com/bugtraq/1997A/O514.html, December 19
1997.

[2] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. Stackguard: Automatic adaptive de-
tection and prevention of buffer-overflow attacks.
In Proceedings of the 7th USENIX Security Sym-
posium, pages 63-78, San Antonio, TX, January
1998.

[3] M. Daran and P. Thevenod-Posse. Software error

analysis: A real case study involving real faults and
mutations. In Proceedings of the 1996 Int'l Symp.
on Software Testing and Analysis, pages 158-171.
ACM Press, January 1996.

[4] B.P. MILLER ET AL. Fuzz revisted: A re-
examination of the reliability of UNIX utilities and
services. Technical report, University of Wiscon-
sin, Computer Sciences Dept, November 1995.

[5] R. BUTLER AND G. FINELLI. The infeasibility of
experimental quantification of life-critical software
reliability. In Proceedings of SIGSOFT '91: Soft-

ware for Critical Systems, pages 66-76, New Or-
leans, LA, December 1991.

[6] A.K. Ghosh, T. O'Connor, and G. McGraw. An
automated approach for identifying potential vul-
nerabilities in software. In Proceedings of the 1998

IEEE Symposium on Security and Privacy, pages
104-114, Oakland, CA, May 3-6 1998.

[7] J. VOAS AND G. MCGRAW. Software Fault Injec-
tion: Inoculating Programs Against Errors. John
Wiley and Sons, New York, 1998.

[8] J. D. MUSA, A. IANNINO, AND K. OKUMOTO. Soft-

ware Reliability Measurement Prediction Applica-
tion. McGraw-Hill, 1987. ISBN 0-07-044093-X.

